EUCLIDEAN GEOMETRY

SOLVING GEOMETRICAL PROBLEMS

The following exercises involve the use of all the theorems established thus far.

The following strategy can be used when solving riders:

STEP 1: Analyse the RTP (required to prove) in terms of **angles.**

<u>STEP 2:</u> Pay attention to the <u>keywords</u> given. Look for information in the diagram which might prove useful. Use colours to mark off equal angles / sides.

STEP 3: Brainstorm and develop a rough proof.

STEP 4: Rewrite a formal proof.

1. When parallel lines are given

2. How to prove that lines are parallel

3. Angle or line bisectors

If BD bisects $\hat{B}_1 = \hat{B}_2$ If CD bisects AB then AE = EB

4. Triangle information

If $\hat{B} = \hat{C}$, then AB = AC. If AB = AC, then $\hat{B} = \hat{C}$. $\triangle ABC$ is **isosceles**

$$\hat{A} + \hat{B} + \hat{C}_2 = 180^{\circ}$$
 (sum $\angle s$ of Δ)
 $\hat{C}_1 = \hat{A} + \hat{B}$ (Ext \angle of Δ)

If AB = AC = BC, then $\hat{A} = \hat{B} = \hat{C} = 60^{\circ}$ $\triangle ABC$ is <u>equilateral</u>

5. When you must prove two sides are equal

or

To prove AC = CB, prove $\hat{C}_1 = 90^{\circ}$

To prove AB = AC, prove $\hat{B} = \hat{C}$

or

To prove AD = BD, try prove \triangle ACD = \triangle BCD

6. Centre of a circle given

7. <u>Diameter given</u>

If AOB is diameter then $\hat{C} = 90^{\circ}$ (\angle in semi circle)

8. Angles in the same segment given (NB: angles formed at the circumference)

If A, B, C and D are concyclic (lie on a circle) and if AB, AC, BD and CD are chords of the circle, then $\hat{A} = \hat{D}$ and $\hat{B} = \hat{C}$ (\angle in same segment) or (line/arc subtends equal angles)

9. Chords in a circle

If AB = BC, then $\hat{D}_1 = \hat{D}_2$

If ABC and DEF are equal circles. then $\hat{A} = \hat{F}$ if BC = DE

10. Cyclic quadrilateral given

If ABCD is cyclic then $\hat{A} + \hat{C} = 180^{\circ}$ and $\hat{B} + \hat{D} = 180^{\circ}$ (opp $\angle s$ of cyclic quad)

If LMOP is cyclic then $\hat{M}_2 = \hat{P}$ (Ext \angle cyclic quad)

If EFGH is cyclic then $\hat{E}_1 = \hat{H}_1$, $\hat{E}_2 = \hat{F}_2$, $\hat{H}_2 = \hat{G}_2$, $\hat{G}_1 = \hat{F}_1$ ($\angle s$ in same segment)

11. How to prove that a quadrilateral is cyclic

ABCD would be a cyclic quadrilateral if you could prove one of the following

Condition 1:

$$(\hat{A}_1 + \hat{A}_2) + (\hat{C}_2 + C_3) = 180^\circ \text{ or}$$

 $(\hat{B}_1 + \hat{B}_2) + (\hat{D}_1 + \hat{D}_2) = 180^\circ$

Condition 2:

$$\hat{\mathbf{C}}_1 = \hat{\mathbf{A}}_1 + \hat{\mathbf{A}}_2$$

Condition 3:

$$\hat{A}_1 = \hat{B}_2 \text{ or } \hat{A}_2 = \hat{D}_1 \text{ or } \hat{B}_1 = \hat{C}_2 \text{ or } \hat{D}_2 = \hat{C}_3$$

12. Tangents to circles given

tan ⊥ rad

Tangents from the same point

Tan-chord (acute case)

Tan-chord (obtuse case)

13. How to prove that a line is a tangent to a circle

ABC is a tangent if $\hat{OBC} = 90^{\circ}$

DCE is a tangent if $\hat{C}_1 = \hat{A}$

ABC would be a tangent to the "imaginary" circle drawn through EBD if $\hat{B}_1 = \hat{E}$